Pure Exploration in Finitely–Armed and Continuously–Armed Bandits
نویسندگان
چکیده
We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. A forecaster is assessed in terms of its simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. The main result is that the required exploration–exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret.
منابع مشابه
Generic Exploration and K-armed Voting Bandits
We study a stochastic online learning scheme with partial feedback where the utility of decisions is only observable through an estimation of the environment parameters. We propose a generic pure-exploration algorithm, able to cope with various utility functions from multi-armed bandits settings to dueling bandits. The primary application of this setting is to offer a natural generalization of ...
متن کاملOn Interruptible Pure Exploration in Multi-Armed Bandits
Interruptible pure exploration in multi-armed bandits (MABs) is a key component of Monte-Carlo tree search algorithms for sequential decision problems. We introduce Discriminative Bucketing (DB), a novel family of strategies for pure exploration in MABs, which allows for adapting recent advances in non-interruptible strategies to the interruptible setting, while guaranteeing exponential-rate pe...
متن کاملPure Exploration for Max-Quantile Bandits
We consider a variant of the pure exploration problem in Multi-Armed Bandits, where the goal is to find the arm for which the λ-quantile is maximal. Within the PAC framework, we provide a lower bound on the sample complexity of any ( , δ)-correct algorithm, and propose algorithms with matching upper bounds. Our bounds sharpen existing ones by explicitly incorporating the quantile factor λ. We f...
متن کاملPure exploration in finitely-armed and continuous-armed bandits
We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast...
متن کاملExponentiated Gradient LINUCB for Contextual Multi-Armed Bandits
We present Exponentiated Gradient LINUCB, an algorithm for contextual multi-armed bandits. This algorithm uses Exponentiated Gradient to find the optimal exploration of the LINUCB. Within a deliberately designed offline simulation framework we conduct evaluations with real online event log data. The experimental results demonstrate that our algorithm outperforms surveyed algorithms.
متن کامل